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1 Introduction

Let § CRY (N >1) be a bounded domain with a C?-boundary 80Q.
We consider the following nonlinear Neumann vroblem:

[ —Bpulz) + B(2) ()P ?ulz) = Au(2)]**u(z) + f(z,u(z))

a.e. in ), u >0, (1)
<

du
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Fe Ll \{0}, A>0, l<g<p<co.

Here Apu = div (||Du|[P~2Duw).
Note that the term = — Az|? 22 is (p — 1)-sublinear near +co, i.e.




(“concave” term).
The Carathéodory function f(z,z), z € 2, = € R is supposed to be (p — 1)-superlinear near +oco in
x, 1.6
f \
: T
lim ‘—fL’—} = +00
z—+4oo Pl
( “convex” perturbation).
The aim of this work is to establish a bifurcation - type result for the positive smooth solutions of (1},
with respect to the parameter A > 0.

Particular case: The right hand side term of (1) has the form z — Az|Y =%z + jz|" 72z, with

Np

— ifp< N
N—-p e

l<g<p<s<r<p*=
+o0, ifp>N

his particular case is what we mostly encounter in the literature and only in the context of Dirichlet
problems.

In this direction we mention the semilinear (i.e., p = 2) work of Ambrosetti-Brezis-Cerami [1], which
is the first to consider problems with concave and convex terms.

The above work was extended to nonlinear problems driven by the p-Laplacian, by Garcia Azorero-
Manfredi-Peral Alonso [3] and by Guo-Zhang [4], for p > 2. In the latter case, the authors also consider
reactions of the form

Mz|" 2z + g(a),

where g € CY(R), ¢'(z) >0, zg(z) >0, for z € R and

Hm ————— =
jz|—0 |z|P~2x

9@ _, o 9@

> A
’ lz|—ec0 |I'P'—?‘.'L' :

For Dirichlet problems driven by the p-Laplacian and with reactions of more general form we also
refer to the following works:

» Boccardo-Escobedo-Peral [2]. The reaction 1s

Ag(z) +27"1, z>0,
where
g9:Ry = R continuous, g(z) <éz9 'forz > 0withé>0, 1<g<p<r<p*
and the function = — Ag(z) + 2"~ ! is nondecreasing on R .

They prove the existence of only one positive solution for A > 0 suitably small.

= Hu-Papageorgiou[5], where the “convex” ({p— 1)-superlinear) term is a more general Caratheodory
function f(z,z) satisfying the well-known Ambrosetti-Rabinowitz (AR) condition:

“Apu>p, M >0 such that Vo > M,

0 < pulF(z,z) < f(z,z)z uniformly for a.a. z € 0.7



To the best of our knowledge, no bifurcation-type results exist for the Neumann problem.

We mention only the work of Wu-Chenl[6], whe= the reaction is of the form Af(z,2), A > 0,
f{-,) {(p — 1)-sublinear near infinity in = € R.

The authors also impose the extra restrictive conditions that essigfﬁ > 0 and that NV < p.

They produce three solutions for all A > 0 in an open interval. The obtained solutions are not positive.

2 The hypotheses on the perturbation.

(H) : The Carathéodory function f(z,2), z € , = € R has {r — 1) -polynomial growth with respect to z
(p < 7 < px). Moreover,
f(z )

i) lim -
() x—0+ .'L'p—l

=0 uniformly for a.a. z € {1

(ii) there exists dg > 0 such that

flz,z) >0 foraa zef}, allzel0, &)

and
V0 >0, 3& >0 such that for a.a. z € ,

T = f(z,2) + &Pt s increasing on [0, ¢].

(i) if F(z,2) = /Drv f(z,s)ds, then
Filzx)

lim = +o0 uniformly for a.a. z € 0
] P
and
L z,r)x —pF(z,z r
1o < liminf fanle phizme uniformly for a.a. z € Q,
T—+400 T
where

N *
TE([T—p)Hl;}x{L;},p), g<T, 1 >0

Remark 1: Since we are interested in positive solutions and hypotheses H (i), (ii), (iii) involve only
the positive semiaxis we may assume that f(z,z) =0 for a.a. z € Z, all z < 0.

Remark 2: In order to express the “ (p — 1) -superlinearity” of f(z,z) with respect to = near +co,
instead of the usual in such cases AR-condition, we employ the much weaker conditions H(iii).

Example:

0 if <0

3

flz) =

_.L-P
TP+ 1

:cp_l(ln(rcp+1)+ ), il z>0.

Note that f satisfies H(iii) but it does not satisfy the AR-condition.



3 Some function spaces

In the study of our problem we will use the following two [unction spaces

Cp() = {u e CH{@): g: ~ 0 on 00}
and
wie() = i
where || - |} denotes the Sobolev norm of WHP{{).

Note that C1(Q) is an ordered Banach space with positive cone
Cy ={ueCL() :u(z) >0 forall z € {I}.
This cone has a nonempty interior given by

intCy = {u € Cy s u(z) >0 for all z € 0},

4  The Euler functional

Let ¢y : W2P(§2) =+ R be the Euler functional for problem (1) defined by

1 1 A
,.u:—lDu"”—i——f’u*"dszu'*?—/Fz,udz,
wa(u) pi, 1 IJQdll qH 1% i (z,u)

where F(z,2) = / flz, s)ds.
/o

Proposition 1 Under hypotheses (H), @, € C* (W’,{*P(ﬂ)) and each nontrivial criticel point of ) is a
positive smooth solution of {1).

The proof is mainly based on the nonlinear regularity theory and also on the nonlinear maximum
principle of Vazquez combined with hypothesis H(ii):
“¥Y9 >0, 3& >0 such that for a.a. z € 0,

z = f(z,z) + &aP' s increasing on 0,4).”
&

Proposition 2 Under hypotheses (H), @x satisfies the Cerami condition (C -condition):
“ Bvery sequence {&n}n>1 € X = WLP(Q) such that

sup Jpa(za)| < 00, (14 [lzall)eh(za) = 0 in X* a5 n = oo,
n

2

has w slrongly convergent subsequence

The proof crucially uses hypothesis H(iii).



5 The bifurcation -type result

~A,u(2) + AR (2)P2u(z) = Alu()]"2ulz) + (z,u(z))

a.e. in {2, (1)

A
l ,{‘,Ji =0on 0N (1<g<p<oo)
T

Theorem 3 If hypotheses (H) hold and 8 € L)\ {0}, then there exists A* > 0 such that
(a) for X € (0, A*) problem (1) hes at least two positive smooth solutions

(b} for A =X* problem (1) has at least one positive smooth solution

{c) for A > A* problem (1) has no positive solution

The proof of Theorem 1 may be divided into two parts:
Part I: We consider the set

S ={A>0: problem (1) has a positive smooth A -solution}

and we prove that S is nonempty and bounded from above.
Part 1I: We prove that A* = sup S has the desired properties.

Sketch of the proof of Part I:

Proposition 4 Under the hypotheses of Th. 3, there exists A > 0 such that for every X € (Q, 5\) we
can find py > 0 for which we have

inf[@a(u) : |Juli=pa]=mnx>0.
In order to prove Prop. 4, one shall need hypothesis H(i):

“ lim flz,3)

z—0+ zP—!

=0 uniformly for a.a. z € ("

in conjunction with the (r—1) -polynomial growth of f{z, z) with respect to z and also with the inequalities
1 g Cpsin .

Proposition 5 Under the hypotheses of Th. 3, we have
ea(tu) = —co  as £ — +oo,
for each uw € Cp \ {0} with ||u]|, = 1.
The proof of Prop. 5 is based on the p-superlinearity of F(z,z) with respect to = near +oo {(H(iii))

and also on the fact that ¢ < p.
Now Prop. 1, 2, 4, 5 via Mountain Pass Theorem yield

ot



Proposition 6 Under the hypotheses of Th. 3, we have (U,;\) C 5, where A is as postulated in Prop. 4.
Hence, S # ©.

Proposition 7 Under the hypotheses of Th. 3, the set S is bounded from above.
For the proof, we shall need the following
Lemma 8 Let 8 € L) \ {0} ,u,% € int C.. and B > 0 such that for a.a. z € (),
—Bpuz) + Bl + R < —AE() + BRI (2)
Then u < 4 on (0.

The proof of the above lemmma is mainly based on the monotonicity properties of the operator 7' :
X = X* (X = W.P(Q)) induced by the differential operator u — —A ju + f(-)|u|Pu.

Proof of Prop. 7: The (p — 1) -superlinearity of f(z,z) with respect to z near +oco combined with
hypothesis H(ii) enables us to choose A > 0 large such that

Azt 4 flz,x2) > 1Blleez®™! foraa.ze, allz > 0.

Claim: A is an upper bound of S.
Indeed, suppose that for some A > A our problem has a A -solution u € int 'y, Let m = mingu > 0.
Then for a.a. z € 1,

—Agu(z) + B2)u(z)P! 2 ||Blleou(2)P ™ + (A = Au(z)~
> —Aym 4 B(Z)mP 4+ (A= A)mi!

which implies (see Lemma 8) that v > m on O (false!). O

Sketch of the proof of Part II:
We begin with two Lemmas:

Lemma 9 Letu,u € int C; and 0 < A < X such that u is o A -solution and T is o A-solution. If u<nu,
then u < 4 on {1

For the proof, we set 8 = ||Z]|cc and we choose & > 0 such that = — f(z,z) + £zP~ is increasing

on [0,6] (hypothesis H(ii)).
Then (2) holds for

“BLY =B8() + &, “R=A—-Am’", m=mini
and now Lemma 8 applies.
Lemma 10 Let 0 < A < A and % € int Cy bea X -solution. Then there exists a A-solution

ug € int Cp such that .
O<up<u on 2, @alug) <O.



Proof: We consider the following truncation of the reaction:
0, if z <0
olz,z) = Ac?~ + f(z, 1), if 0<z<alz)
A{z)T + flz,0(2)), i G(2) <z

We set Gy(z,z) = foz gx(z,s)ds and consider the C'l-functional 4 : WiP(Q) — R defined by
Wy(u) = iHDU,HT’ + E/ AlulPdz — / Gz, u)dz.
’ P Popla o ’

By using suitable test functions we may show that each critical point of 44y lies in the interval [0, 1)
and it is also a critical point of the Euler functional ;.
Note that 1, is coercive and weakly lower semicontinuous, so we can find ug € W:#(Q2) such that

¥y (ug) = inf ¥a(u) 1w € WHP(Q) ]

Then ¥\ {up) =0 = up € [0,%] and @) (ug) =0.
Moreover, we may show that for sufficiently small
t >0, we have ¢, (t) <0, so

Walug) <0 =1(0) = up #0.

It follows that wg is a positive smooth A-solution with py(uo) = 1 (up) < 0.
Finally, since A < A, we have up < U {see Lemuma 5).

Thus, ug € (0,7). O

To proceed, set A* = sup §.

Proposition 11 If hypotheses of Th. 3 hold and X\ € (0,A*), then problem (1) has least two smooth
positive solutions
ug, G € intCy , up F 4, wue <4, @ilug) <0.
Sketch of the proof:

Let A € (0,A*). Choose X € (A, A*)NS and a A -solution @ € int Cy .
By view of Lemma 10, we may find a A -solution wug € int C. such that

0<ug <u, @xlug) <O0.
Next, consider the following truncation of the reaction:
Mug(2)1™1 + f(z,u0(2), if = Sup(2)

f,\(z,;;:) =
Azt + f(z, ), it wo(z) < .

Let Fy\(z,z) = / Fr(z,s)ds and consider the G -functional Gy WEP(Q) = R defined by
0

1 1 : -
oW = IDul + [ flulrds ~ | A(zude
Yy PJq Q



By using suitable test functions we may show that for each critical point 1w of @y, we have ug < w

and that w is also a critical point of the Euler functional 5.
Evidently, ¢ |jo, @ Is coercive and weakly lower semicontinuous. So, we can find up € [0, %] such

that
(25 [ag) = inff (,5)\ (u) U e {0, ﬁ] ] ¥

Then
—@\ (o) € Njo, z)(To)

where N o, g)(uo) denotes the normal cone to [0, @] at o .
By using the definition of the normal cone of a closed and convex set combined with our hypotheses,

we may show that @ (ig) = 0.
It follows that ug < up and that @y is a nontrivial critical point of the Euler functional ¢y. Hence, @

is also a positive smooth A-solution to our problem.
o If %g # up, we are done.
» Suppose that 7y = ug. Since ug € (0,%), we infer that

up is alocal CL(T)) — minimizer of & .

It follows from a fact due to Barletta -Papageorgiou (which extends previous resuits of Brezis -
Nirenberg and of Azorero-Manfredi-Alonso) that

up is a local W2AP(Q2) — minimizer of 3y .

Without loss of generality, we may assume that up is an isolated critical point and local minimizer of
the functional @, .
Then we prove that:

e for some p > 0,
@a(ue) <iInfl @a(u) o |lu —upll = p |

e for every w € int C with |jull, =1,

Prtu) = —oo, as i — +oo

e (5, satisfies the C -condition

Arguing via Mountain Pass Theorem we may find a critical point 4 of @y such that @ # ug .
It follows that up < 4 and that @ is a nontrivinl critical point of the Euler functional ¢,
Hence, 4 is a second positive smooth A-solution to our problem. |

Proposition 12 If hypotheses of Th. 3 hold, then for A = A*, problem (1) has at least one smooth
positive solution.

The key ingredient in the proof of Proposition 12, is the following



Lemma 13 Let S C S be nonempty and bounded from below with inf S' > 0 and B C int Cy. be [ &
-bounded. Then there exzists w € int C such that for ench X\ € S’ and for each A-solution u € B, we
have w < .

Sketch of the proof of Prop. 12: Cheose a nondecreasing sequence (\,) C § such that A, T A*.
By view of Prop.11, we may find {tintnz1 C int Cy such that

oy, (un) =0, va, (un) <0, foralln>1.
Arguing in a similar way as in the proof of the Cerami condition, we may show (by passing Lo

subsequences) that
Up -+ Uy, strongly in WhP(0).

‘Then nonlinear regularity theory guarantces that

sup Hunnoo < co
Ti

and that u, is a smooth A*-solution.
Now Lemma 13 asserts that for some w € int Cy, we have w < u, , n > 1. Thus, w < ., 80 u, €
int Cy.
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