POSITIVE SOLUTIONS FOR NONLINEAR NEUMANN PROBLEMS WITH CONCAVE AND CONVEX TERMS

by

George Smyrlis

Department of Mathematics
Technological Educational Institute of Athens
Ag. Spyridonos Str.
Egaleo 12210, Athens, GREECE
e-mail: gsmyrlis@teiath.gr

and

N.S. Papageorgiou, D. Kravvaritis

National Technical University
Department of Mathematics
Zografou Campus
Athens 157 80, GREECE

1 Introduction

Let $\Omega \subseteq \mathbb{R}^N$ $(N \ge 1)$ be a bounded domain with a C^2 -boundary $\partial \Omega$. We consider the following nonlinear Neumann problem:

$$\begin{cases}
-\Delta_p u(z) + \beta(z)|u(z)|^{p-2}u(z) = \lambda |u(z)|^{q-2}u(z) + f(z, u(z)) \\
\text{a.e. in } \Omega, \quad u > 0, \\
\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega, \\
\beta \in L^{\infty}(\Omega)_+ \setminus \{0\}, \quad \lambda > 0, \quad 1 < q < p < \infty.
\end{cases}$$
(1)

Here $\Delta_p u = \text{div } (||Du||^{p-2}Du)$. Note that the term $x \to \lambda |x|^{q-2}x$ is (p-1)-sublinear near $+\infty$, i.e.

$$\lim_{x \to +\infty} \frac{\lambda x^{q-1}}{x^{p-1}} = 0$$

("concave" term).

The Carathéodory function $f(z,x), z \in \Omega, x \in \mathbb{R}$ is supposed to be (p-1)-superlinear near $+\infty$ in x, i.e.

$$\lim_{x \to +\infty} \frac{f(z, x)}{x^{p-1}} = +\infty$$

("convex" perturbation).

The aim of this work is to establish a bifurcation - type result for the positive smooth solutions of (1), with respect to the parameter $\lambda > 0$.

Particular case: The right hand side term of (1) has the form $x \to \lambda |x|^{q-2}x + |x|^{r-2}x$, with

$$1 < q < p < r < p^* = \begin{cases} \frac{Np}{N-p}, & \text{if } p < N \\ +\infty, & \text{if } p \ge N \end{cases}.$$

This particular case is what we mostly encounter in the literature and only in the context of Dirichlet problems.

In this direction we mention the semilinear (i.e., p = 2) work of Ambrosetti-Brezis-Cerami [1], which is the first to consider problems with concave and convex terms.

The above work was extended to nonlinear problems driven by the p-Laplacian, by Garcia Azorero-Manfredi-Peral Alonso [3] and by Guo-Zhang [4], for $p \ge 2$. In the latter case, the authors also consider reactions of the form

$$\lambda |x|^{q-2}x + g(x),$$

where $g \in C^1(\mathbb{R}), \ g'(x) \ge 0, \ xg(x) \ge 0$, for $x \in \mathbb{R}$ and

$$\lim_{|x| \to 0} \frac{g(x)}{|x|^{p-2}x} = 0, \qquad \lim_{|x| \to \infty} \frac{g(x)}{|x|^{p-2}x} > \lambda_1 \ .$$

For Dirichlet problems driven by the p-Laplacian and with reactions of more general form we also refer to the following works:

• Boccardo-Escobedo-Peral [2]. The reaction is

$$\lambda g(x) + x^{r-1}, \quad x \ge 0,$$

where

 $g: \mathbb{R}_+ \to \mathbb{R}$ continuous, $g(x) \leq \hat{c}x^{q-1}$ for $x \geq 0$ with $\hat{c} > 0$, $1 < q < p < r < p^*$ and the function $x \to \lambda g(x) + x^{r-1}$ is nondecreasing on \mathbb{R}_+ .

They prove the existence of only one positive solution for $\lambda > 0$ suitably small.

• Hu-Papageorgiou[5], where the "convex" ((p-1)-superlinear) term is a more general Caratheodory function f(z,x) satisfying the well-known Ambrosetti-Rabinowitz (AR) condition:

" $\exists \mu > p, M > 0$ such that $\forall x > M$,

$$0 < \mu F(z, x) \le f(z, x)x$$
 uniformly for a.a. $z \in \Omega$."

To the best of our knowledge, no bifurcation-type results exist for the Neumann problem. We mention only the work of Wu-Chen[6], where the reaction is of the form $\lambda f(z,x)$, $\lambda > 0$, $f(\cdot,\cdot)$ (p-1)-sublinear near infinity in $x \in \mathbb{R}$.

The authors also impose the extra restrictive conditions that essinf $\beta > 0$ and that N < p.

They produce three solutions for all $\lambda > 0$ in an open interval. The obtained solutions are not positive.

2 The hypotheses on the perturbation.

(H): The Carathéodory function f(z,x), $z \in \Omega$, $x \in \mathbb{R}$ has (r-1)-polynomial growth with respect to x (p < r < p*). Moreover,

(i)
$$\lim_{x\to 0^+} \frac{f(z,x)}{x^{p-1}} = 0$$
 uniformly for a.a. $z \in \Omega$

(ii) there exists $\delta_0 > 0$ such that

$$f(z,x) \ge 0$$
 for a.a. $z \in \Omega$, all $x \in [0, \delta_0]$

and

 $\forall \theta > 0, \ \exists \ \hat{\xi}_{\theta} > 0 \ \text{such that for a.a.} \ z \in \Omega,$

$$x \to f(z,x) + \hat{\xi}_{\theta} x^{p-1}$$
 is increasing on $[0,\theta]$.

(iii) if
$$F(z,x) = \int_0^x f(z,s)ds$$
, then

$$\lim_{x\to +\infty} \frac{F(z,x)}{x^p} = +\infty \quad \text{uniformly for a.a. } z\in \Omega$$

and

$$\eta_0 \leq \liminf_{x \to +\infty} \frac{f(z,x)x - pF(z,x)}{x^\tau} \quad \text{uniformly for a.a. } z \in \Omega,$$

where

$$\tau \in \left((r-p) \max \left\{ 1, \frac{N}{p} \right\}, p^* \right), \quad q < \tau, \quad \eta_0 > 0$$

Remark 1: Since we are interested in positive solutions and hypotheses H (i), (ii), (iii) involve only the positive semiaxis we may assume that f(z,x) = 0 for a.a. $z \in \mathbb{Z}$, all $x \leq 0$.

Remark 2: In order to express the "(p-1)-superlinearity" of f(z,x) with respect to x near $+\infty$, instead of the usual in such cases AR-condition, we employ the much weaker conditions H(iii).

Example:

$$f(x) = \begin{cases} 0, & \text{if } x \le 0 \\ x^{p-1} \left(\ln(x^p + 1) + \frac{x^p}{x^p + 1} \right), & \text{if } x > 0. \end{cases}$$

Note that f satisfies H(iii) but it does not satisfy the AR-condition.

3 Some function spaces

In the study of our problem we will use the following two function spaces

$$C_n^1(\overline{\Omega}) = \{ u \in C^1(\overline{\Omega}) : \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega \}$$

and

$$W_n^{1,p}(\Omega) = \overline{C_n^1(\overline{\Omega})}^{||\cdot||},$$

where $||\cdot||$ denotes the Sobolev norm of $W^{1,p}(\Omega)$. Note that $C_n^1(\overline{\Omega})$ is an ordered Banach space with positive cone

$$C_{+} = \{u \in C_{n}^{1}(\overline{\Omega}) : u(z) > 0 \text{ for all } z \in \overline{\Omega}\}.$$

This cone has a nonempty interior given by

$$\operatorname{int} C_+ = \{ u \in C_+ : u(z) > 0 \text{ for all } z \in \overline{\Omega} \}.$$

4 The Euler functional

Let $\varphi_{\lambda}: W_n^{1,p}(\Omega) \to \mathbb{R}$ be the Euler functional for problem (1) defined by

$$\varphi_{\lambda}(u) = \frac{1}{p}||Du||_p^p + \frac{1}{p}\int_{\Omega}\beta|u|^pdz - \frac{\lambda}{q}||u^+||_q^q - \int_{\Omega}F(z,u)dz,$$

where
$$F(z,x) = \int_0^x f(z,s)ds$$
.

Proposition 1 Under hypotheses (H), $\varphi_{\lambda} \in C^1(W_n^{1,p}(\Omega))$ and each nontrivial critical point of φ_{λ} is a positive smooth solution of (1).

The proof is mainly based on the nonlinear regularity theory and also on the nonlinear maximum principle of Vazquez combined with hypothesis H(ii):

" $\forall \theta > 0$, $\exists \hat{\xi}_{\theta} > 0$ such that for a.a. $z \in \Omega$,

$$x \to f(z,x) + \hat{\xi}_{\theta} x^{p-1}$$
 is increasing on $[0,\theta]$."

Proposition 2 Under hypotheses (H), φ_{λ} satisfies the Cerami condition (C -condition): "Every sequence $\{x_n\}_{n\geq 1}\subseteq X=W_n^{1,p}(\Omega)$ such that

$$\sup_{x} |\varphi_{\lambda}(x_n)| < \infty, \quad (1 + ||x_n||)\varphi'_{\lambda}(x_n) \to 0 \text{ in } X^* \text{ as } n \to \infty,$$

has a strongly convergent subsequence "

The proof crucially uses hypothesis H(iii).

5 The bifurcation -type result

$$\begin{cases}
-\Delta_p u(z) + \beta(z)|u(z)|^{p-2}u(z) = \lambda |u(z)|^{q-2}u(z) + f(z, u(z)) \\
\text{a.e. in } \Omega, \\
\frac{\partial u}{\partial n} = 0 \text{ on } \partial\Omega \quad (1 < q < p < \infty).
\end{cases}$$
(1)

Theorem 3 If hypotheses (H) hold and $\beta \in L^{\infty}_{+}(\Omega) \setminus \{0\}$, then there exists $\lambda^* > 0$ such that

- (a) for $\lambda \in (0, \lambda^*)$ problem (1) has at least two positive smooth solutions
- (b) for $\lambda = \lambda^*$ problem (1) has at least one positive smooth solution
- (c) for $\lambda > \lambda^*$ problem (1) has no positive solution

The proof of Theorem 1 may be divided into two parts:

Part I: We consider the set

$$S = {\lambda > 0 : problem (1) has a positive smooth \lambda -solution}$$

and we prove that S is nonempty and bounded from above.

Part II: We prove that $\lambda^* = \sup S$ has the desired properties.

Sketch of the proof of Part I:

Proposition 4 Under the hypotheses of Th. 3, there exists $\hat{\lambda} > 0$ such that for every $\lambda \in (0, \hat{\lambda})$ we can find $\rho_{\lambda} > 0$ for which we have

$$\inf [\varphi_{\lambda}(u) : ||u|| = \rho_{\lambda}] = \eta_{\lambda} > 0.$$

In order to prove Prop. 4, one shall need hypothesis H(i):

"
$$\lim_{x\to 0^+} \frac{f(z,x)}{x^{p-1}} = 0$$
 uniformly for a.a. $z \in \Omega$ "

in conjunction with the (r-1) -polynomial growth of f(z,x) with respect to x and also with the inequalities $1 < q < p < r < p^*$.

Proposition 5 Under the hypotheses of Th. 3, we have

$$\varphi_{\lambda}(tu) \to -\infty$$
 as $t \to +\infty$.

for each $u \in C_+ \setminus \{0\}$ with $||u||_p = 1$.

The proof of Prop. 5 is based on the p-superlinearity of F(z,x) with respect to x near $+\infty$ (H(iii)) and also on the fact that q < p.

Now Prop. 1, 2, 4, 5 via Mountain Pass Theorem yield

Proposition 6 Under the hypotheses of Th. 3, we have $(0,\hat{\lambda}) \subseteq S$, where $\hat{\lambda}$ is as postulated in Prop. 4. Hence, $S \neq \emptyset$.

Proposition 7 Under the hypotheses of Th. 3, the set S is bounded from above.

For the proof, we shall need the following

Lemma 8 Let $\beta \in L^{\infty}(\Omega)_+ \setminus \{0\}$, $u, \widetilde{u} \in int C_+$ and R > 0 such that for a.a. $z \in \Omega$,

$$-\Delta_p u(z) + \beta(z)u(z)^{p-1} + R \le -\Delta_p \widetilde{u}(z) + \beta(z)\widetilde{u}(z)^{p-1}.$$
 (2)

Then $u < \widetilde{u}$ on $\overline{\Omega}$.

The proof of the above lemma is mainly based on the monotonicity properties of the operator $T: X \to X^*$ $(X = W_n^{1,p}(\Omega))$ induced by the differential operator $u \to -\Delta_\rho u + \beta(\cdot)|u|^{p-2}u$.

Proof of Prop. 7: The (p-1) -superlinearity of f(z,x) with respect to x near $+\infty$ combined with hypothesis H(ii) enables us to choose $\overline{\lambda} > 0$ large such that

$$\overline{\lambda}x^{q-1} + f(z,x) \ge ||\beta||_{\infty}x^{p-1}$$
 for a.a. $z \in \Omega$, all $x \ge 0$.

Claim: $\overline{\lambda}$ is an upper bound of S.

Indeed, suppose that for some $\lambda > \overline{\lambda}$ our problem has a λ -solution $u \in \operatorname{int} C_+$. Let $m = \min_{\overline{\Omega}} u > 0$. Then for a.a. $z \in \Omega$,

$$-\Delta_p u(z) + \beta(z)u(z)^{p-1} \ge ||\beta||_{\infty} u(z)^{p-1} + (\lambda - \overline{\lambda})u(z)^{q-1}$$
$$\ge -\Delta_p m + \beta(z)m^{p-1} + (\lambda - \overline{\lambda})m^{q-1}$$

which implies (see Lemma 8) that u > m on $\overline{\Omega}$ (false!).

Sketch of the proof of Part II:

We begin with two Lemmas:

Lemma 9 Let $u, \widetilde{u} \in int C_+$ and $0 < \lambda < \widetilde{\lambda}$ such that u is a λ -solution and \widetilde{u} is a $\widetilde{\lambda}$ -solution. If $u \leq \widetilde{u}$, then $u < \widetilde{u}$ on $\overline{\Omega}$.

For the proof, we set $\theta = ||\widetilde{u}||_{\infty}$ and we choose $\xi_{\theta} > 0$ such that $x \to f(z, x) + \xi_{\theta} x^{p-1}$ is increasing on $[0, \theta]$ (hypothesis H(ii)).

Then (2) holds for

"
$$\beta(\cdot)$$
" = $\beta(\cdot) + \xi_{\theta}$, " R " = $(\widetilde{\lambda} - \lambda)m^{q-1}$, $m = \min_{\overline{\Delta}} \widetilde{u}$

and now Lemma 8 applies.

Lemma 10 Let $0 < \lambda < \widetilde{\lambda}$ and $\widetilde{u} \in int C_+$ be a $\widetilde{\lambda}$ -solution. Then there exists a λ -solution $u_0 \in int C_+$ such that

$$0 < u_0 < \widetilde{u}$$
 on $\overline{\Omega}$, $\varphi_{\lambda}(u_0) < 0$.

Proof: We consider the following truncation of the reaction:

$$g_{\lambda}(z,x) = \begin{cases} 0, & \text{if } x \leq 0 \\ \lambda x^{q-1} + f(z,x), & \text{if } 0 < x < \widetilde{u}(z) \\ \lambda \widetilde{u}(z)^{q-1} + f(z,\widetilde{u}(z)), & \text{if } \widetilde{u}(z) \leq x. \end{cases}$$

We set $G_{\lambda}(z,x)=\int_{0}^{x}g_{\lambda}(z,s)ds$ and consider the C^{1} -functional $\psi_{\lambda}:W_{n}^{1,p}(\Omega)\to\mathbb{R}$ defined by

$$\psi_{\lambda}(u) = \frac{1}{p}||Du||_p^p + \frac{1}{p}\int_{\Omega}\beta|u|^pdz - \int_{\Omega}G_{\lambda}(z,u)dz.$$

By using suitable test functions we may show that each critical point of ψ_{λ} lies in the interval $[0, \tilde{u}]$ and it is also a critical point of the Euler functional φ_{λ} .

Note that ψ_{λ} is coercive and weakly lower semicontinuous, so we can find $u_0 \in W_n^{1,p}(\Omega)$ such that

$$\psi_{\lambda}(u_0) = \inf[\ \psi_{\lambda}(u) : u \in W_n^{1,p}(\Omega)\].$$

Then $\psi_{\lambda}'(u_0) = 0 \Rightarrow u_0 \in [0, \widetilde{u}] \text{ and } \varphi_{\lambda}'(u_0) = 0.$

Moreover, we may show that for sufficiently small

t>0, we have $\psi_{\lambda}(t)<0$, so

$$\psi_{\lambda}(u_0) < 0 = \psi_{\lambda}(0) \Rightarrow u_0 \neq 0.$$

It follows that u_0 is a positive smooth λ -solution with $\varphi_{\lambda}(u_0) = \psi_{\lambda}(u_0) < 0$.

Finally, since $\lambda < \widetilde{\lambda}$, we have $u_0 < \widetilde{u}$ (see Lemma 5).

Thus, $u_0 \in (0, \tilde{u})$.

To proceed, set $\lambda^* = \sup S$.

Proposition 11 If hypotheses of Th. 3 hold and $\lambda \in (0, \lambda^*)$, then problem (1) has least two smooth positive solutions

$$u_0$$
, $\hat{u} \in intC_+$, $u_0 \neq \hat{u}$, $u_0 < \hat{u}$, $\varphi_{\lambda}(u_0) < 0$.

Sketch of the proof:

Let $\lambda \in (0, \lambda^*)$. Choose $\widetilde{\lambda} \in (\lambda, \lambda^*) \cap S$ and a $\widetilde{\lambda}$ -solution $\widetilde{u} \in \operatorname{int} C_+$. By view of Lemma 10, we may find a λ -solution $u_0 \in \operatorname{int} C_+$ such that

$$0 < u_0 < \widetilde{u}, \quad \varphi_{\lambda}(u_0) < 0.$$

Next, consider the following truncation of the reaction

$$\hat{f}_{\lambda}(z,x) = \begin{cases} \lambda u_0(z)^{q-1} + f(z, u_0(z)), & \text{if } x \le u_0(z) \\ \lambda x^{q-1} + f(z, x), & \text{if } u_0(z) < x. \end{cases}$$

Let $\hat{F}_{\lambda}(z,x) = \int_0^x \hat{f}_{\lambda}(z,s)ds$ and consider the C^1 -functional $\hat{\varphi}_{\lambda}: W_n^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\hat{\varphi}_{\lambda}(u) = \frac{1}{p}||Du||_{p}^{p} + \frac{1}{p}\int_{\Omega}\beta|u|^{p}dz - \int_{\Omega}\hat{F}_{\lambda}(z,u)dz.$$

By using suitable test functions we may show that for each critical point w of $\hat{\varphi}_{\lambda}$, we have $u_0 \leq w$ and that w is also a critical point of the Euler functional φ_{λ} .

Evidently, $\hat{\varphi}_{\lambda}|_{[0, \overline{u}]}$ is coercive and weakly lower semicontinuous. So, we can find $\tilde{u}_0 \in [0, \tilde{u}]$ such that

$$\hat{\varphi}_{\lambda}(\widetilde{u}_0) = \inf[\,\hat{\varphi}_{\lambda}(u) : u \in [0, \,\widetilde{u}]\,]$$
.

Then

$$-\hat{\varphi}_{\lambda}'(\widetilde{u}_0) \in N_{[0,\ \widetilde{u}\]}(\widetilde{u}_0)$$

where $N_{[0, \tilde{u}]}(\tilde{u}_0)$ denotes the normal cone to $[0, \tilde{u}]$ at \tilde{u}_0 .

By using the definition of the normal cone of a closed and convex set combined with our hypotheses, we may show that $\hat{\varphi}'_{\lambda}(\tilde{u}_0) = 0$.

It follows that $u_0 \leq \widetilde{u}_0$ and that \widetilde{u}_0 is a nontrivial critical point of the Euler functional φ_{λ} . Hence, \widetilde{u}_0 is also a positive smooth λ -solution to our problem.

- If $\widetilde{u}_0 \neq u_0$, we are done.
- Suppose that $\widetilde{u}_0 = u_0$. Since $u_0 \in (0, \widetilde{u})$, we infer that

$$u_0$$
 is a local $C_n^1(\overline{\Omega})$ — minimizer of $\hat{\varphi}_{\lambda}$.

It follows from a fact due to Barletta -Papageorgiou (which extends previous results of Brezis - Nirenberg and of Azorero-Manfredi-Alonso) that

$$u_0$$
 is a local $W_n^{1,p}(\Omega)$ — minimizer of $\hat{\varphi}_{\lambda}$.

Without loss of generality, we may assume that u_0 is an isolated critical point and local minimizer of the functional $\hat{\varphi}_{\lambda}$.

Then we prove that:

• for some $\rho > 0$,

$$\hat{\varphi}_{\lambda}(u_0) < \inf[\hat{\varphi}_{\lambda}(u) : ||u - u_0|| = \rho]$$

• for every $u \in \text{ int } C_+ \text{ with } ||u||_p = 1$,

$$\hat{\varphi}_{\lambda}(tu) \to -\infty$$
, as $t \to +\infty$

• $\hat{\varphi}_{\lambda}$ satisfies the C -condition

Arguing via Mountain Pass Theorem we may find a critical point \hat{u} of $\hat{\varphi}_{\lambda}$ such that $\hat{u} \neq u_0$. It follows that $u_0 \leq \hat{u}$ and that \hat{u} is a nontrivial critical point of the Euler functional φ_{λ} . Hence, \hat{u} is a second positive smooth λ -solution to our problem.

Proposition 12 If hypotheses of Th. 3 hold, then for $\lambda = \lambda^*$, problem (1) has at least one smooth positive solution.

The key ingredient in the proof of Proposition 12, is the following

Lemma 13 Let $S' \subseteq S$ be nonempty and bounded from below with $\inf S' > 0$ and $B \subseteq \inf C_+$ be $||\cdot||_{\infty}$ -bounded. Then there exists $w \in \inf C_+$ such that for each $\lambda \in S'$ and for each λ -solution $u \in B$, we have $w \leq u$.

Sketch of the proof of Prop. 12: Choose a nondecreasing sequence $(\lambda_n) \subseteq S$ such that $\lambda_n \uparrow \lambda^*$. By view of Prop.11, we may find $\{u_n\}_{n\geq 1} \subseteq \text{int } C_+$ such that

$$\varphi'_{\lambda_n}(u_n) = 0$$
, $\varphi_{\lambda_n}(u_n) < 0$, for all $n \ge 1$.

Arguing in a similar way as in the proof of the Cerami condition, we may show (by passing to subsequences) that

$$u_n \to u_*$$
, strongly in $W_n^{1,p}(\Omega)$.

Then nonlinear regularity theory guarantees that

$$\sup_{n}||u_n||_{\infty}<\infty$$

and that u_* is a smooth λ^* -solution.

Now Lemma 13 asserts that for some $w \in \text{int } C_+$, we have $w \leq u_n$, $n \geq 1$. Thus, $w \leq u_*$, so $u_* \in \text{int } C_+$.

References

- [1] A. Ambrosetti-H.Brezis- G.Cerami: "Combined effects of concave and convex nonlinearities in some elliptic problems" J.Funct. Anal. 122(1994), 519-543.
- [2] L.Boccardo-M.Escobedo-I.Peral: "A Dirichlet problem involving critical exponents" Nonlinear Anal. 24(1995), 1639-1648.
- [3] J. Garcia Azorero J. Manfredi I. Peral Alonso: "Sobolev versus Hölder minimizers and global multiplicity for some quasilinear elliptic equations" Commun. Contemp. Math. 2(2000), 385-404.
- [4] Z.Guo-Z.Zhang: " $W^{1,p}$ versus C^1 local minimizers and multiplicity results for quasilinear elliptic equations" J.Math. Anal. Appl. 286(2003), 32-50.
- [5] S.Hu-N.S.Papageorgiou: "Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin" Tohoku Math. J. 62(2010), 1-26.
- [6] X.Wu-L.Chen: "Existence and multiplicity of solutions for elliptic equations involving the p- Laplacian" NoDEA 15(2008), 745-755.